微博

ECO中文网

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4707|回复: 0
打印 上一主题 下一主题
收起左侧

Erik D. Demaine 计算机科学家和数学家

[复制链接]
跳转到指定楼层
1
发表于 2022-3-14 00:46:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

马上注册 与译者交流

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
Erik D. Demaine
Computer Scientist and Mathematician | Class of 2003
Tackling and solving difficult problems related to folding and bending—moving readily between the theoretical and the playful, with a keen eye to revealing the former in the latter.

Portrait of Erik D. Demaine
Photos for download >
Title
Computer Scientist and Mathematician
Affiliation
Massachusetts Institute of Technology
Location
Cambridge, Massachusetts
Age
22 at time of award
Area of Focus
Computer Science and Electrical Engineering, Mathematics, Statistics, and Probability
Published October 5, 2003
ABOUT ERIK'S WORK
Erik Demaine is a young computer scientist who has already established a reputation for tackling and solving difficult problems. Although he actively pursues projects related to many areas of computer science, such as parallel processing architectures and algorithm complexity, Demaine is noted for his research in computational geometry. Recently, he collaborated on a proof of a long-standing conjecture known as the “carpenter’s rule,” which asserts that all closed polygons with non-crossing connections can be made convex (i.e., straightened out, roughly) without breaking or changing the relative length of the connections. This work reflects his broader interest in problems related to folding and bending. Such problems hold implications for both abstract mathematics and practical issues such as manufacturing methods. Demaine moves readily between the theoretical and the playful, with a keen eye to revealing the former in the latter. For example, he recently demonstrated that a popular computer game, Tetris, represents an example of a computational geometry problem that falls into the “NP-complete” category, implying explosive growth in difficulty with no shortcuts available. Demaine has also invented problems and solutions related to other areas of recreational mathematics (e.g., origami, combinatorial games). Through his eclectic choices for research topics and his prodigious and prolific output, Demaine has demonstrated an appetite for challenges that cross disciplinary boundaries and a capacity to synthesize ideas from disparate approaches.

BIOGRAPHY
Erik Demaine received a B.Sc. (1995) from Dalhousie University and an M.Math. (1996) and Ph.D. (2001) from the University of Waterloo. In 2001, he became an assistant professor in the Department of Electrical Engineering and Computer Science and in the Laboratory for Computer Science at MIT. Demaine has presented more than 50 papers at national and international conferences, published dozens of articles in professional publications, written chapters for five books, and co-edited two books. He is currently co-authoring a book, Folding and Unfolding in Computational Geometry.



Erik D. Demaine
计算机科学家和数学家 | 2003级
处理和解决与折叠和弯曲有关的困难问题--在理论和游戏之间游刃有余,并以敏锐的眼光在后者中揭示前者。

Erik D. Demaine的肖像
图片下载 >
标题
计算机科学家和数学家
工作单位
马萨诸塞州技术学院
工作地点
马萨诸塞州剑桥市
年龄
获奖时为22岁
重点领域
计算机科学和电气工程, 数学、统计和概率
发表于2003年10月5日
关于埃里克的工作
Erik Demaine是一位年轻的计算机科学家,他已经在处理和解决困难问题方面建立了声誉。虽然他积极从事与计算机科学许多领域有关的项目,如并行处理架构和算法复杂性,但Demaine因其在计算几何方面的研究而受到关注。最近,他合作证明了一个长期存在的被称为 "木匠规则 "的猜想,该猜想断言所有具有非交叉连接的封闭多边形都可以在不破坏或改变连接的相对长度的情况下变成凸形(即,大致拉直)。这项工作反映了他对与折叠和弯曲有关的问题更广泛的兴趣。这些问题对抽象数学和制造方法等实际问题都有影响。德迈恩在理论和游戏之间游刃有余,并以敏锐的眼光在后者中揭示出前者。例如,他最近证明了一个流行的计算机游戏,俄罗斯方块,代表了一个属于 "NP-complete "类别的计算几何问题的例子,这意味着难度的爆炸性增长,没有捷径可走。德曼还发明了与其他娱乐数学领域(如折纸、组合游戏)相关的问题和解决方案。通过他不拘一格的研究课题选择和他惊人的多产成果,Demaine展示了他对跨越学科界限的挑战的胃口和综合不同方法的想法的能力。

个人简历
Erik Demaine在达尔豪斯大学获得理学士学位(1995年),并在1996年获得数学硕士和博士学位。(1996年)和滑铁卢大学博士(2001年)。2001年,他成为麻省理工学院电子工程和计算机科学系以及计算机科学实验室的助理教授。Demaine在国内和国际会议上发表了50多篇论文,在专业出版物上发表了几十篇文章,为五本书撰写了章节,并共同编辑了两本书。他目前正在与人合著《计算几何中的折叠与展开》一书。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|网站地图|关于我们|ECO中文网 ( 京ICP备06039041号  

GMT+8, 2024-11-15 01:29 , Processed in 0.114387 second(s), 20 queries .

Powered by Discuz! X3.3

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表